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Abstract. Light ray and free particle paths on a rotatingdisc are analysed. Previous work on 
this problem has been incomplete, often misleading and occasionally erroneous. It is shown 
how, due to the non-Euclidean nature of the spatial geometry of the disc, two apparently 
contradictory representations of photon trajectories on the disc are equivalent to each 
other. The velocity of light is calculated and shown to vary with position and with certain 
parameters describing the trajectory. The time of flight and distance travelled along the 
trajectory between two fixed reference points are shown to depend in general on the 
direction of flight (A+B or B + A )  as well as on the position of the end points A and B. 
Finally an examination is made of the claim by Jennison and others that a contraction of 
length occurs in the radial direction. It is shown that this claim is without foundation and 
that the results of experiments by Davies and Jennison are easily explained without resort to 
such a contraction. 

1. Introduction 

The rotating disc is one of the simplest examples of an accelerated frame of reference. It 
is of some interest therefore to employ the postulates and machinery of the general 
theory of relativity (for the special case of flat space-time) to find explicit formulae for 
light paths and free particle trajectories and to investigate the spatial geometry of the 
disc. 

Previous work on this problem has been incomplete and occasionally faulty. Mprller 
(1952) gives a brief account of the spatial geometry, obtaining but not solving the spatial 
geodesic equations, and discusses time dilation. Arzeliks (1966) derives solutions to the 
spatial geodesic equations, though not perhaps in the most convenient form, and 
establishes the spatial route traced out by a light ray, thereby reproducing Silberstein’s 
(1921) early result. He also derives velocity transformation formulae, but these are 
restricted to velocity components in the circuital direction only. 

More recently Grprn (1975) has investigated certain aspects of the spatial geometry 
and has calculated the velocity of light on a rotating disc. He obtains the wrong result 
however for the time taken for light to travel outwards from the centre of the disc to a 
point with radial coordinate r, and follows Mprller in adopting a definition of velocity in 
which the infinitesimal time interval is not directly measurable by standard clocks. 

Previously Jennison (1963,1964) obtained formulae for light paths and an equation 
expressing apparent contraction of the disc in the radial direction. Subsequent 
experimental work by Davies and Jennison (1975) has been claimed to confirm the 
latter, and Ashworth and Jennison (1976) have recently restated the argument in favour 
of radial contraction. We shall show however that Jennison’s formulae for light paths 
give only the local direction of a light ray correctly, and yield a misleading impression of 
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the entire light trajectory when mapped onto a Euclidean plane, the reason being that 
the spatial geometry of the disc is non-Euclidean. We shall show also that there is no 
contraction of the disc in the radial direction, and that analysis of the Davies and 
Jennison experiments does not support the suggestion that such a contraction occurs. 

In the following sections of this paper we shall derive equations for the paths of light 
rays and free particles on a rotating disc and for the velocity of each in terms of position 
along the trajectory, We shall be particularly concerned with respresentations of these 
trajectories, especially light rays, on a Euclidean plane. Other topics of interest to be 
discussed include the solutions to the spatial geodesic equations, the time of flight for a 
free particle or photon travelling between two fixed reference points, and the spatial 
distance along a null geodesic. 

2. Coordinate and velocity transformation equations, and spatial geometry 

We assume space-time is flat and consider a disc S rotating with constant angular 
velocity w with respect to a frame s which is inertial everywhere. We choose plane 
polar coordinates (?, &) to identify reference points? in s lying in the same plane as the 
disc, the origin i = 0 coinciding with the axis of rotation. If 7 denotes time measured in 
s, the invariant space-time interval can be expressed as$ 

ds2 = d i 2  - c-2(di2 + i2 de'). 

i=  r, t7= e+wt,  I = t. (2) 

ds2=dt2(1  -w2r2/c2)-c-2(dr2+r2 d02+2wr2 d6 dt). 

(1 1 
Now consider the coordinate transformation 

In terms of the new coordinates (r, 8, t ) ,  ds2 can be written as 

(3 1 
From the transformation (2), we note that the reference point (r, 6 )  is described in the 
original frame s as rotating about the origin with constant angular velocity w. Thus the 
reference system which is the set of all reference points (r, 8) with constant values of r 
and 8 may be identified with the rotating disc S .  

We now apply the relativistic postulates to find the time interval d7 and length 
interval dl  as measured on the disc using standard clocks and measuring rods respec- 
tively. The time interval is 

(4 ) 
2 2 2 112 d7 =ds(dr=O=df( l  - w  r /c ) , 

where clearly wr/c S 1 for d7 to be real. This corresponds to the physical condition that 
no part of a real disc may have a velocity with respect to s greater than c. Equation (4) 
exhibits time dilation of moving clocks, as anticipated in the special theory, dT being the 
time interval between the events (r, 6, t )  and (r, 8, t + dt)  according to a standard clock in 
S at the reference point (r, e), and dt = di being the time between these events according 
to clocks in the inertial frame S .  Alternatively equation (4) may be interpreted in terms 
of the effect on the rate of a clock placed in a pseudo-gravitational field (Mprller 1952). 
We note that a clock at rest in S designed to indicate the coordinate time t would require 

t See M ~ l l e r  (1952) for elucidation of the concept of reference point. 
$ W e  suppress the term involving d f ,  since only two spatial dimensions are involved throughout this paper. 
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to run fast with respect to a standard clock at rest at the same reference point by the 
factor (1 -w2r2/c2)-1’2. 

The distance between any two neighbouring reference points in an arbitrary system 
of reference may be calculated either by an argument based on comparison of 
measuring rods in the reference system of interest and in the locally co-moving inertial 
frame (Mgller 1952) or by an alternative argument involving a light signal passing to 
and fro between these reference points (Landau and Lifshitz 1971). In each case the 
result is the same; applied to the rotating disc we find, for the distance between 
reference points (r, 8) and (r +dr,  8 +de),  

1/2  

d l = ( d r 2 + 1  - w  r IC 2 )  . 

The formula which yields equation (5) may be shown (Moller 1952) to be invariant 
under transformation of coordinates within the same system of reference, and thus 
contains the intrinsic spatial geometry of the reference system in question. 

We note, as special cases of equation ( 5 ) ,  that the distance between reference points 
(r, 8) and (r +dr, 8) is 

dl, = dr, (6) 

while the distance between (r, e )  and (r, 8 +de)  is 

It follows from integration of equation ( 6 )  that the coordinate r is correctly interpreted 
as the distance in S between r = 0 (the centre of the disc) and any reference point with 
radial coordinate r along the spatial geodesic (e  = constant) connecting them. The 
equation 7 = r therefore implies no length contraction in the radial direction, as 
suggested by the analysis of length contraction in the special theory and contrary to the 
claim made by Jennison (1964). On the other hand equation (7 )  implies length 
contraction in the rotational direction, again in accordance with the special theory 
(contraction only in the direction of relative motion), r de  = P d 8  being the distance in s 
between the reference points (r, e) and (r, 8 +de) ,  their position in s being determined 
at the same time. 

From the coordinate transformation (2), we note that a span of 2 7  in 8 is required to 
label the set of all events happening at the same time, since the same is true of the angle e 
in s. We can therefore represent the reference point (r, 8) on the disc by a point on the 
Euclidean plane whose polar coordinates are (r, 8). In constructing this representation 
we must pay careful attention to the non-Euclidean nature of the spatial geometry on 
the disc; thus distances in the radial direction on the Euclidean plane are correct 
measures of the corresponding distances on the disc, but distances in the rotational 
direction are underestimates of the corresponding distances on the disc by a factor 
(1 -w2r2/c2)1’2. In particular, we note from equation (7) that the actual distance on the 
disc around one complete orbit of a circle of radius r centred on r = 0 is 2.rrr(l- 
w 2r2/ c ’)-’/’. 

To investigate the spatial geometry of the disc more fully, we require to solve the 
geodesic equations for the space with metric given by equation ( 5 ) .  M$ller (1952) has 
discussed some aspects of these equations and has displayed a few typical spatial 
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geodesics mapped onto a Euclidean plane. He did not quote solutions to these 
equations however, and we now present the solutions here?: 

r2 = r:(l + A  2), (8a  1 
8 = &,+tan-'A - (u2r$c2)A,  ( 8 b )  
s = ro(l -w2r?j/c2)1'2A, (8c 1 

where A is a parameter, (ro,  eo) is the point on the arc nearest the origin, and s is the 
distance along the arc measured from this point. Singular solutions also exist for 
geodesics passing through the origin, of the form 

r = s, e = eo. ( 9 )  
In figure l ( a )  we have plotted some contour lines on the Euclidean plane joining points 
equidistant from the fixed point ( o r / c  = 0 - g 1  0 = 0). Figure l ( b )  shows some spatial 
geodesics passing through the same point. 

(a1 Ibl 

Figure 1. ( a )  Contour lines and ( b )  spatial geodesics drawn for the point (wr/c  = 0.8, f? = 0). 
The outer circle is the 'velocity-of-light' circle with radius R = c/w.  The gaps in contours 
and geodesic lines near this circle are due to computational difficulties and have no physical 
significance. 

Following Landau and Lifshitz (1971)  we now define the velocity of a particle which 
passes through the space-time events (r, 8, r )  and ( r  + dr ,  0 +do, t + dt) by 

( 1 0 )  
dl and d r  being given by equations ( 5 )  and (4)  respectively. This contrasts with the 
definition U = dl/dr adopted by Maller (1952),  Gran (1975)  and others; but we prefer to 
use d7 rather than dr since only the former is a time interval according to a standard 
clock. In addition it may easily be shown that the velocity of light is aiways equal to c in 

t On eliminating A from ( 8 a )  and (8b),  the solution quoted by Arze1it.s (1966) is recovered; the solution given 
here is preferred, however, since it provides additional information about arc length. 

U = dl/dr, 
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time-orthogonal frames whenever ‘velocity’ is defined in terms of a proper time 
interval, but not necessarily so when defined in terms of a coordinate time interval. 

We can now derive transformation formulae for components of velocity in the radial 
and rotational directions. In the disc frame these components are defined by 

d 1, drldt 
d r  (1 - w 2 r 2 / c 2 ) 1 / 2 ’  

dl, r de/dt 
dT 1 - w 2 r 2 / c 2 ’  

U =-= 

ve =-=- 

In the inertial frame, the corresponding components are dr = dF/di, Ue = T d@di, and 
application of the transformation ( 2 )  now yields 

U, = a/(] - w 2 r 2 / c 2 ) l / * ,  

U = [a’+ w2r2(1 - a f / c 2 > -  2wrf ie1”~/ (1  - - w 2 r 2 / c 2 )  

U @  = (fie - w r ) / ( l -  w 2 r 2 / c 2 ) .  ( 1 2 )  

( 1 3 )  

2 1 / 2  The total speed U = ( U :  + a e )  in the rotating frame is easily shown to satisfy 

where 0 is the corresponding speed in the inertial frame. We note that, although d s c ,  
there is no corresponding upper limit on the values of U,, and U. Also, the velocity 
transformation equations in (1 2) are asymmetrical between the two reference frames, 
as befits their different physical specification: the same results are not obtained by 
interchanging the coordinates and replacing w by - W .  In particular, 0,. = 0 and de = wr 
for a particle which is at rest in the frame of the disc ( U ,  = = 0), whereas U ,  = 0 and 

= -wr / ( l  - w 2 r 2 / c 2 )  for a particle which is at rest in the inertial frame (a, = Os = 0). 

3. Trajectory of free particles and light rays on the disc 

According to relativistic theory, free particle paths in space-time are solutions of the 
geodesic equation, and photon paths are solutions of the null geodesic equation. These 
equations may be solved in the most convenient coordinate system, and the solutions in 
any other coordinates may be found directly from the coordinate transformation 
equations. For our problem, analysis of free particle and photon paths with respect to 
the inertial frame is elementary, and we therefore deduce, invoking the coordinate 
transformation (2 ) ,  the following equations which describe these paths in the frame of 
the disc: 

U4a)  
2 2 - 2 2  r = r o + u  t ,  tan(8 t w t  - 90) = crdt/ro. 

Here d is the (constant) speed of the particle (0 s 0; d = c if the ‘particle‘ is a photon) 
with respect to the inertial frame s, (ro, Bo, 0) are the event coordinates of the point on 
the trajectory closest to the disc centre, and @ = + 1  ( - 1 )  if the rotational velocity 
component CO in the inertial frame is positive (negative). Singular solutions also exist 
representing motion through the origin (To = 0) and are of the form 

r = filtl, e +Ut - eo = 0 ,  (14b) 
where eo is the constant value of 6 in S .  We note that the path traced out in this case is 
that of an Archimedean spiral. It can easily be shown that these solutions satisfy the 
appropriate geodesic equation in the ( r ,  0, t )  coordinate system (Davies 1976), although 
the covariance of the theory renders this unnecessary. 
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The velocity components of the particle or photon can now be evaluated, either by 
calculating dr/dt and dO/dt from ( 1 4 a )  then inserting the results in ( l l ) ,  or by first 
evaluating the velocity components 0, and de in the inertial frame then applying the 
transformation ( 1 2 ) .  By either method we find 

2 2 112 
C 03 wro 

v =  1 - w 2 r 2 / c  2 [ ( 1 - y --)2 - ( 1 - $)( 1 -3 9 

where the sign of v ,  is + 1  ( - 1 )  if 1 > O  ( t  C O ) .  
We note that the speed of a free particle at a point on its trajectory with radial 

coordinate r can sometimes (for example, when 6 = 0 and w ( r  + ro)/c  > 1 )  be greater 
than the speed of a photon passing through the same point on its trajectory, for the same 
value of ro,  provided U = 1 for the photon trajectory. No alarm need be caused by this 
however, since the two trajectories are quite different and the comparison has no 
particular significance. By contrast we shall prove in 9 4 the physically expected result 
that the fastest signal between any two fixed reference points on the disc is a light signal. 

Gran (1975)  has obtained expressions for the velocity components for a light ray on 
the disc which, even allowing for a difference in definition (Gran defines v = dl/dt, in 
our notation, compared with our choice t; = dl/dT), differ markedly from the expres- 
sions in (15) above. Inspection of Gran’s analysis shows however that his expressions 
for vr and are obtained by setting ds = 0 in equation (3)and solving for dr/dt or dO/dt 
with d e  or dr respectively set equal to zero. Thus his calculated velocity components 
are correct only if the light ray is momentarily radial or circuital in direction and do not 
apply at a general point on the light ray. To verify this, we note from ( 1 5 )  that V e  = 0 if 
and only if c = 1 and (setting ij = c for a light ray) r o / r  = wr/c.  Substituting we find 
v , = f c  which is Gran’s result (equation (47 )  in his paper) after allowing for the 
difference in definition of velocity. Similarly V ,  = 0 in (15 )  if and only if r = ro;  this yields 
V e  = (ac  - w r o ) / ( l  - w 2 r i / c 2 )  which is essentially Gran’s result (his equation (50)). It is 
clear that, because his expressions for U, and are valid only at special points on any 
particular light path, wrong results will be obtained on attempted integration of them 
along a finite section of the path. For example, Gran attempts to calculate the 
coordinate time interval required for a light signal to travel from the origin to a point 
with radial coordinate r by integrating his equation for the radial component of velocity, 
The answer obtained (his equation (56 ) )  is inevitably wrong, the correct result being 
simply r / c  as can be seen from (14b)  with d = c.  

have been criticised by Davies (1976),  who maintains 
that dt  is a time interval for an observer at the origin in contrast to d7 which is a local 
time interval; ‘velocity’ must therefore be dl/dT and not dlldt. We do ‘not accept 
however Davies’ premise that the coordinates (r, 8, r )  which label events are somehow 
associated with one particular observer (the observer at the origin). In particular we 
regard dt as possessing a perfectly objective, observer-free meaning: in this context, it is 
the difference in time coordinate between the two events whose coordinates in the disc 
frame are ( r ,  8, t )  and ( ( r  + dr, O +de, t + dr). Certainly it is possible to argue-as we do 
here-that Gran’s choice of velocity definition (U = dl/dt) is less preferable than an 
alternative (U = dl/dT); but it is quite unjustified to maintain that Gran’s results are 
simply mistaken. As we have shown above, GrBn’s equations for U, and have 

Gran’s results for U, and 
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restricted validity, and the only problem is that they can be so readily misinterpreted as 
applying along an entire light trajectory rather than at special points on it. 

We now define the local direction of motion of the particle or photon as the solution 
4 to the equations U, = U cos 4, U e  = U sin 4. In particular, for a photon we deduce from 
equations ( 1 5 )  and ( 1 6 )  that 

uro/r  - o r / c  
1 - u o r o / c  ? sin 4 = . (17) 

( 1  -r;/r2)”*(1 - 0 2 r 2 / c 2 ) 1 / 2  
1 - uwro/c cos 4 = f 

Solving the sin 4 equation for uwro/c and substituting in equation ( 1 6 )  with 6 / c  = 1 ,  we 
find 

C 
U =  1 + ( o r / c )  sin 4 ’ 

Thus the speed of light equals c only if r = 0 or if sin 4 = 0, i.e. U = 1 and ro /r  = o r / c .  
It is possible, and for some purposes convenient, to construct a representation of the 

light path on a Euclidean plane in which the relation between 4 and r on the disc is 
correctly exhibited; thus 4 will be the angle between the tangent at a point on the light 
path and the straight line joining this point to the origin. In addition we are free to 
choose one point on the trajectory whose coordinates are correctly represented; let this 
point be (ro, eo). It is then easy to show that, in such a representation, the (r, 4 )  relation 
in ( 1 7 )  describes a circle of radius 4 (R - uro) with centre at (4 (R + m0), Bo + 4 ~ ( l  - U ) )  

which is tangential to the ‘velocity-of-light circle’ with radius R = c / o .  Figure 2 shows 
sample representative circles for U = + 1  and - 1 .  For each, 4 = 3 ~ / 2  when r = R and 
4 = 7r/2 (U = 1 )  or 3 ~ / 2  (U = - 1 )  when r = ro. 

It is important to note that, due to the non-Euclidean nature of the spatial geometry 
on the disc, such a diagram is not the same as that which correctly portrays the (r, 6 )  
relation. In mapping the trajectory of a light ray on the disc onto a Euclidean plane, one 

Figure 2. Representation of equation (17). The outer circle has radius R. The inner circles 
indicate the instantaneous direction 4 of the light ray for U = 1 (smaller circle) and U = -1 
(larger circle). For the smaller circle, the angle 4 at C is the angle between OC and the 
tangent to the circle at C, r = OC, ro = OP, eo = 0 by choice, and I is the distance along the 
arc PC. For the larger circle, similar remarks apply with C and P replaced by D and Q 
respectively, except that Bo is now the exterior angle XOQ. 
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may freely choose between: ( a )  a diagram in which the reference point ( r ,  6 )  on the disc 
is represented by the point (r,  0 )  on the Euclidean plane (as mentioned in 9: 2) but in 
which angles and directions (and distances, in general) are not correctly represented; 
and ( b )  a diagram which represents correctly directions (and distanced) along the 
trajectory, but not the trajectory itself in the sense of the (r,  e )  relation. Obviously 
figure 2 is a diagram of type (6) ;  by contrast we exhibit in figure 3 a diagram of type ( a )  
which shows the spiral paths traced out by various null geodesics starting from the fixed 
point (wr/c = 0.5, 8 = 0). 

It is now clear that the circular trajectories displayed by Jennison (1963) and by 
Ashworth and Jennison (1976) are merely special cases of representational diagrams of 
type (b). However the two types of diagram are not distinguished in these papers, and 
the suggestion that such a diagram portrays the ‘real’ trajectory (with the implication 
that the diagram of type ( a )  is somehow incorrect) is certainly unjustified. We note also 
that the distinction between the two types of diagram has little or nothing to do with 
imagined experimental procedures for measuring variables of interest, contrary to the 
views expressed by Davies and Ashworth (1977) in a reply to Browne (1977). 

Figure 3. Paths traced out (in the sense of correct portrayal of the (r,  e )  relationship) by null 
geodesics departing from (wr/c  = 0.5, 0 = 0). Incoming null geodesics would be represen- 
ted by a similar spiral pattern but in the opposite rotational sense. 

4. Time of flight between two fixed reference points on the disc 

Consider a free particle which, in the inertial frame s, passes between the space-time 
events (il, &, jl) and ( i z ,  &, T z ) ,  its velocity with respect to s being 8. From inspection 

t We shall prove this in 5 5. 
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of the triangle in s whose vertices are (Pl, &), (f t ,  &) and the origin (figure 4), we see 
immediately that 

o 2 ( i 2  - yl)’ = i: + F$ - 2 f l  fZ  cos(& - $1). (19 )  

Figure 4. Spatial path traced out by particle (or photon) in the inertial frame S. A and B are 
the points in marking the intersection of the particle path with the world lines of the 
reference points A(rl, e,) and B(r2, 6,) respectively. P is  the point on the trajectory nearest 
the origin. 

We deduce from the coordinate transformation (2) that 

~ 2 ( t 2 - t l ) Z =  rf+r2-2rl rt cos[e2-e1+w(tz-t l)].  (20)  
This equation therefore yields the coordinate time interval tt - tl for the particle to 
travel from the reference point ( r l ,  6 , )  to the reference point ( rz ,  et)  on the disc. 

An exact analytic solution of equation (20 )  in closed form is not possible, but we can 
nevertheless shed some light on its properties. We draw attention first to some special 
solutions. When rl = 0 we have, as expected, t t -  t l  = r z / B ;  correspondingly when 
r2 = 0, tZ - t l  = r l / B ,  When B = 0, a solution exists provided rl = r2,  namely o(fZ - t l )  = 
el - et + 2 n r  ( n  = integer). This corresponds of course to the case of a particle at rest in 
the inertial frame which periodically coincides with the position of any reference point 
on the disc having the same value of r, the coordinate time interval between successive 
coincidences being 2 r l w .  

Next we note that interchange of the coordinates ( r l ,  el)  and (r2,  e2) does not leave 
equation (20) unchanged. Hence, in general, the time required to pass between two 
reference points A and B, for a fixed value of 6, depends not only on the positions of A 
and B but also on whether the path is A + B or B + A. Furthermore, although B in ( 2 0 )  
is obviously a single-valued function of t2 - t l ,  assuming the end points are fixed, we 
shall see later that tz  - t l  is in general a multi-valued function of 8. Physically this arises 
because, provided 6 is small enough, a free particle with speed B relative to s starting 
out from ( r l ,  e l )  at coordinate time tl can intersect the point ( r2 ,  8,) at a later time by 
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setting out in more than one direction. (The possibility of doing so can be most easily 
appreciated by considering the motion in the inertial frame.) 

We now show that f2  - tl  takes on its minimum possible value for a light ray. We 
begin by expressing equation (20) in the non-dimensional form 

pq2 = x:+x:--~x~ x2 c0s(e2- el + V )  (21) 

p = O2/C2, xl  = wrl/c, x2 = wrZ/c,  q = w(t2 - tl). (22) 

where 

The condition for p ( q )  to have a stationary value is dp ldq  = 0. Combining this 
condition with equation (21) we find 

p2q4 - [2p(x: + x:)-4p2]q2 + (x: - xi)’ = 0. (23) 
It is convenient now to distinguish two cases: ( a )  x1 = x2 # 0; in this case a real solution 
exists for q (excluding the trivial solution q = 0) if and only if p < x:; (6) x1 # x2; in this 
case a solution exists for q if and only if p min(x:, x:). Hence, noting that XI< 1, 
x2< 1, in accordance with the condition that no part of a real disc can have a velocity 
greater than c with respect to the inertial frame s, we deduce that, in each case, 
stationary values do occur but only for p < 1. 

We now observe that the right-hand side of equation (21) has, for fixed values of x1 
and x2, a maximum possible value of ( x ~ + x ~ ) ~  and a minimum possible value of 
(XI - ~ 2 ) ~ .  Thus 

(24) 
2 

( x 1 - x 2 ~ 2 / 7 7 2 ~ ~ ~ ~ ~ 1 + x 2 ~ 2 / 7 7  , 
so p increases without limit as q + 0. But p has stationary values only when p < 1. 
Hence a pair of values (p = Po < 1,q  = qo) must exist which satisfy equation (21) and for 
which p ( q )  is a monotonic increasing function of q as q decreases towards 0 starting 
from 70. Eventually, as 77 decreases, p will reach the value 1, which is the maximum 
value of p permitted on physical grounds, and must therefore correspond to the 
minimum allowed value of 7.  Clearly this value of q-the flight time for a photon-is 
unique. 

= r, and 
illustrates the various remarks made in the previous two paragraphs. As e2 - is 
varied, the curve representing p(q )  alters, most noticeably in respect of the ‘phase’ of 
the oscillations which occur for small values of p, but the upper and lower bounds 
specified in (24) remain constant. 

Figure 5 exhibits the (p, q)relationshipfor x1 = 0.8, = 0, and x2 = 0.5, 

5. Spatial distance along null geodesics 

The spatial distance between two reference points on the disc along a null geodesic 
joining them is not the same as the distance between them along the spatial geodesic 
joining them, since the two spatial trajectories are different. The latter has already been 
given in equations ( 8 4  b, c). To calculate the former, we merely integrate dl  given by 
equation ( 5 )  along the null geodesic (14a) with B = c. The result is 

(25) 
where I(r) is the distance between either of the two reference points on the light path 
with r as radial coordinate and the reference point on the path nearest to the origin. This 

I ( r )=  (c/w)(l -mwro/c) sin-’[(w/c)(r*- ri)’”(l -w2ri/c2)-1’2], 
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rl 

Figure 5. Relation between p and satisfying equation (21) with x1 = 0.8, = 0 and 
x z  = 0.5, 92 = T. 

is the same result as obtained by Ashworth and Jennison (1976), although the analysis 
carried out by these authors involved a complicated sequence of imagined radar 
measurements of infinitesimal distances along the null geodesic. 

A simple geometrical calculation shows that 1 is correctly represented by the 
corresponding distance along the appropriate circular arc in a diagram of the type 
shown in figure 2. Thus such a diagram portrays the local direction of motion and 
distance travelled, along The path of the null geodesic. 

It is of interest to examine whether or not the distance travelled by a photon going 
from A to B is the same as the distance travelled by a photon going from B to A, A and B 
being the reference points (rl, 8,)  and (rz ,  8,) respectively. The required distance for 
the route A + B is 

where (i) applies if the route A +  B includes the point on the trajectory closest to the 
origin and (ii) applies if it does not. In order to compare lAB with IBA (and indeed to 
make equation (25 )  more useful) we require to show how the end points A and B and 
the route (here taken to be A + B) determine the values of ro and U and the choice of (i) 
or (ii) in equation (26). 

Considering once again the trajectory of the photon in the inertial frame (figure 4), 
a simple trigonometrical argument shows that 

F ~ F ~  sin(& - 8,) 
c(72 - 71) 

ro = 

The figure however shows a trajectory for which U = 1, i.e. &> &; for the other case 
where (T = -1 the result for ro is the same except that - & is replaced by g1 - 82. Thus, 
making the transformation to the disc coordinates (r, 8, t), the general result is 



2202 K McFarlane and N C McGill 

where tz - tl is obtained from equation (20) with 6 = c. The null geodesic solution 
r2  = r8+c2t2 may now be used to give Itl[ and lt21. Since t2 (time of arrival at B) is always 
greater than t l  (time of departure from A) we see that if r2 > r l ,  12 is positive; if r 2  < rl ,  t l  
is negative; and if rl = r2 (excluding the trivial case where = 0,) t2 is positive and tl is 
negative. Since r2 - r1 is presumed known by this stage, the individual values of tl  and t2 
can now be found. Then if t l  and t2 are of opposite sign, we take option (i) in equation 
(26); otherwise option (ii). We can now calculate & = 81 + wtl ,  & = 82 + ut2. If & > 81, 
U = 1; if &< &, U = -1, and if = & the null geodesic passes through the origin. 
Finally, if required, do can be calculated from the null geodesic solution for 8 (equation 
(14a), setting 6 = c )  inserting the values of 8 and t appropriate to the reference points A 
or B. 

Since an exact analytic solution of equation (20) does not appear to be possible, we 
cannot provide explicit formulae for ro, eo, U, tl and t2 in terms of the coordinates of A 
and B. Nevertheless, having noted in 3; 4 that f 2 -  t l  is, in general, not the same for 
A +  B as for B + A, it is sufficiently clear that IBA will not, in general, be the same as lAB. 
There is nothing particularly surprising about this, for the two spatial trajectories that 
we are considering are always distinct. 

There is one case of special interest however where lAB = IBA. This is where the 
point A is the origin 0, so that rl = 0. Obviously ro = 0 for both outgoing and incoming 
light paths (0 + B and B + 0). We see directly from equation (25) that 

l o B  = I B o  = (c/w> sin-’(wr2/c). (29) 
As expected, this is always greater (except when r 2 = 0 )  than the shortest possible 
distance between 0 and B, which is r2.  

6. Contraction in the radial direction? 

In disagreement with the results set out in 3; 2, Jennison (1964) has argued that a 
contraction of length occurs in the radial direction in the disc frame. This suggestion is 
based on analysis of a hypothetical experiment involving repeated to-and-fro light 
signals passing between an observer 0 at the origin and an observer B at rest on the disc 
at a reference point whose radial coordinate is r. The ratio of the frequencies of 
successive pulses recorded by the two observers is obtained from the general formula 

where the source and receiver are at rest at rl and r2 respectively. This formula may be 
proved in a number of ways (Lee and Ma 1962, Synge 1963); applied to the problem 
under consideration we find 

Jennison now asserts that according to observer B the distance r’ between the two 
observers must therefore be 

t This proposition is true, in general, only for infinitesimally separated end points, as the argument in Landau 
and Lifshitz (1971) makes clear. 
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It is difficult to know, however, precisely what this distance is supposed to represent, 
since Jennison specifies only the end points (0 and B) and not the path between them. 
One possibility is that, for a light path, measurement of a finite to-and-fro travel time is 
tacitly taken to be equivalent to measurement of the to-and-fro distance (along the light 
path) between the end points?, the ratio of these quantities being always equal to c ;  yet 
we have seen in 3: 5 that the distance between 0 and B along either of the light paths 
joining them (i.e. O+  B or B + 0) is ( c / w )  sin-’(wrlc) which is not the same as r‘ ,  nor is 
it the to-and-fro travel time multiplied by a constant factor. (From equations (4) and 
(14b), the to-and-fro travel time is 2r/c according to a coordinate clock or standard 
clock at 0, and 2r/c or ( 2 r / c ) ( l - ~ ~ r * / c ~ ) ” ~  according to a coordinate clock or 
standard clock respectively at B.) On the other hand, neither is r’ equal to the minimum 
distance between 0 and B, i.e. the distance along the spatial geodesic joining them, 
since equation (9) shows that this distance is equal to r. Presumably equation (32) is not 
merely intended to be a definition of r ’ ,  since it would then be logically impossible to 
‘confirm’ the relation experimentally, which is assumed to be possible by Davies and 
Jennison (1975). If, as seems to us, the distance between two arbitrary reference points 
is effectively defined by Jennison to be always 4 2  times the to-and-fro travel time as 
measured by a standard clock, then we would comment: ( a )  that this definition is quite 
different from, and in conflict with, the well established and accepted concept of 
distance within an arbitrary system of reference as formulated by M ~ l l e r  (1952), 
Landau and Lifshitz (1971) and others; (6) that, this being so, confusion is likely to 
result from its use; and (c) that equation (32) is then by definition equivalent to equation 
(31) with exactly the same physical content, and is therefore superfluous. 

We now consider briefly the experiments of Davies and Jennison (1975) whose 
results, the authors claim, corroborate equation (32). (We shall consider here only their 
first experiment, since their second experiment does not involve light signals passing in 
the radial direction, and in any case the authors appear to draw no theoretical 
conclusions from it.) Davies and Jennison demonstrated that the frequency of light 
pulses on arrival back at the origin after a to-and-fro journey to a fixed mirror on the 
periphery of a rotating disc is the same as the original frequency of pulse emission; 
experimentally, no appreciable shift was observed in the interference fringe pattern as 
the angular frequency of rotation of the disc was varied. But this is precisely to be 
expected on the foregoing theory, as can be seen from: ( a )  that two successive 
applications of the frequency shift formula (30) yield the expected zero shift in 
frequency at the end of the round trip; and (b) that the optical path length for the return 
trip expressed in local wavelengths, i.e. the value of dl/A, is the same in the disc frame 
as it is in the inertial frame, namely 2 r / A o ,  and is therefore independent of w.  Hence 
there is no need to invoke equation (32) in order to explain the experimental null result, 
Indeed Davies and Jennison concede that a number of assumptions are required for the 
validity of equation (32), two of which have been shown here to be inadmissible for the 
rotating reference frame. 

7. Conclusions 

We established in 3: 2 that the coordinate system (r, 8, t ) ,  related to the inertial 
coordinates (f, 6 ?) by equation (2), corresponds to the rotating disc as reference 
system. A particular selection of spatial coordinates (r, 0) identifies a fixed reference 
point on the disc, while t is the time coordinate of an event according to a coordinate 



2204 K McFarlane and N C McGill 

clock at the appropriate reference point. The relation between the rate of a coordinate 
clock and a standard clock placed at the same reference point is shown by equation (4). 

The distance between two neighbouring reference points on the disc was given in 
equation (5). We noted that the spatial geometry is non-Euclidean, and gave in 
equations (8) and (9) the solutions to the spatial geodesic equation, i.e. the equations 
representing paths of minimum distance between reference points. 

We then considered the motion of free particles and photons on the disc, which are 
obtained as solutions to the space-time geodesic and null geodesic equations. One of 
the problems encountered was how to represent the trajectories involved, given that the 
spatial geometry of the disc is non-Euclidean. We discussed, for a light ray, two useful 
representations of trajectories involving the Euclidean plane: one of these preserves the 
( r ,  0) relation but gives a misleading impression of direction of motion and distance 
travelled, while the other achieves the opposite. No question is involved of only one of 
these being ‘correct’, contrary to the impression which may have been created by 
previously published work. 

From the solutions to the geodesic and null geodesic equations, most other 
quantities of interest can be calculated, e.g. the velocity of free particles and photons at 
any point on their trajectories. We emphasise that velocity is a defined quantity and 
more than one definition is possible. We prefer U = dl/dT rather than U = dl/dt; but 
whichever of these is adopted, the velocity of light relative to the disc is not generally 
equal to c. This is because the disc frame is not a time-orthogonal frame of reference. 

We showed in 3 4 and 5 5 that the time of flight, and distance travelled, for a photon 
passing between two reference points (A and B) on the disc depend not only on the 
positions of A and B but also on whether the trajectory is A + B  or B + A .  This is 
because the spatial route traced out on the disc is quite different in the two cases, unlike 
the corresponding situation in an inertial frame, and conflicts in no way with the 
axiomatic requirement (guaranteed here by the form of equation ( 5 ) )  that the distance 
between A and B is the same as the distance between B and A measured along the same 
spatial route. 

Finally, we have argued against the suggestion made by Jennison and others that a 
contraction of length in the radial direction occurs on the disc, and have shown how the 
experimental results of Davies and Jennison (1975) are easily explained on con- 
ventional theory. The error in this suggestion consists in: (i) the faulty interpretation of 
the coordinates ( r ,  6, t )  as pertaining somehow to one particular observer-the one at 
the origin-instead of applying to the disc frame as a whole; and (ii) an attempted 
‘operational definition’ of distance which is inconsistent with accepted ideas of distance 
between neighbouring reference points within arbitrary reference systems. On the 
other hand a contraction of length does occur in the circuital direction, as indicated by 
equation (7) and in accordance with the elementary analysis of this phenomenon in 
special relativity. 
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